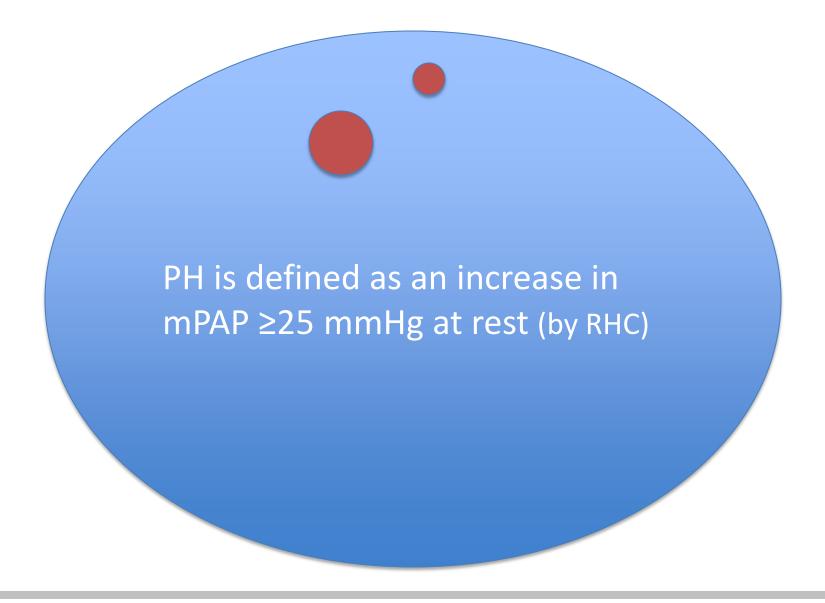


Current Medical Therapy in PAH and CTEPH

Remzi Bag, M.D.

Associate Professor of Medicine Section of Pulmonary & Critical Care Medicine Medical Director, Lung Transplantation

Director, Pulmonary Hypertension Center


Istanbul 12/2017

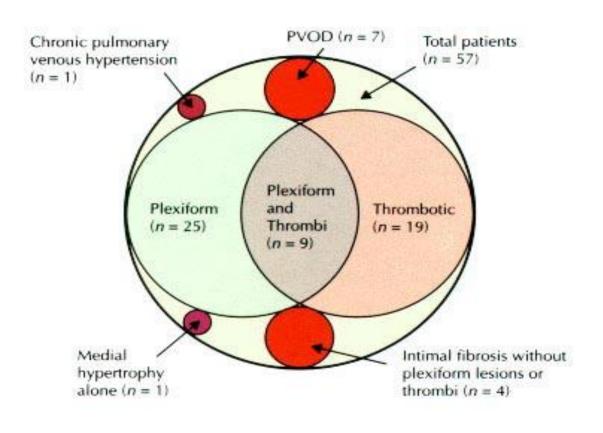
Disclosure

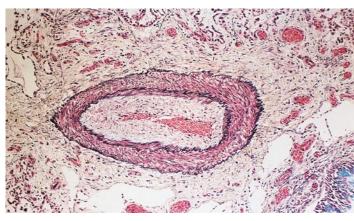
- Advisory board /Speakers Bureau : Gilead, Bayer, Actelion
- Research Support: Gilead, United Therapeutics, Lung Rx, Medtronics,
- I do not plan to discuss the investigational/unapproved use of a commercial product.
- If off-label, I will disclose that the use or indication in question is not currently approved by the FDA for labeling or advertising

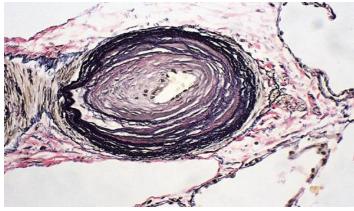
Objectives

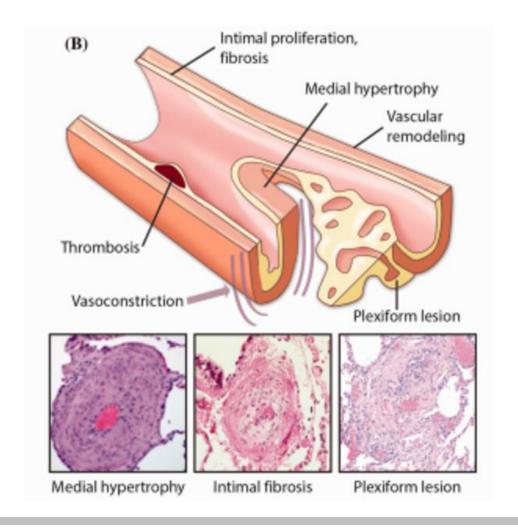
- Define PH, PAH and CTEPH
- Describe screening and diagnostic approaches to PAH
- Discuss management for PAH and CTEPH

Classification of PH

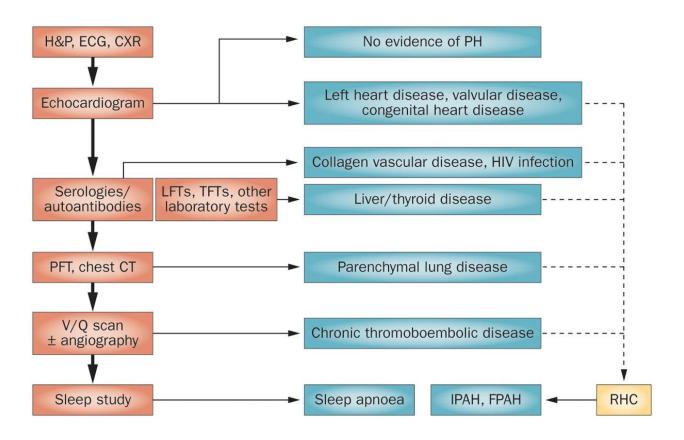

- WHO Gr 1- PAH
- WHO Gr 2- PH due to left heart disease
- WHO Gr 3- PH due to lung disease and/or hypoxia
- WHO Gr 4- CTEPH and other pulmonary artery obstruction
- WHO Gr 5- PH with unclear and /or multifactorial mechanisms


Classification of PH- PAH


- 1. Pulmonary arterial hypertension
 - 1.1 Idiopathic PAH
 - 1.2 Heritable PAH
 - 1.2.1 BMPR2
 - 1.2.2 ALK-1, ENG, SMAD9, CAV1, KCNK3
 - 1.2.3 Unknown
 - 1.3 Drug and toxin induced
 - 1.4 Associated with:
 - 1.4.1 Connective tissue disease
 - 1.4.2 HIV infection
 - 1.4.3 Portal hypertension
 - 1.4.4 Congenital heart diseases
 - 1.4.5 Schistosomiasis
- 1' Pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis
- 1". Persistent pulmonary hypertension of the newborn (PPHN)


Histopathology Findings in NIH PPH Registry

Histology of PAH

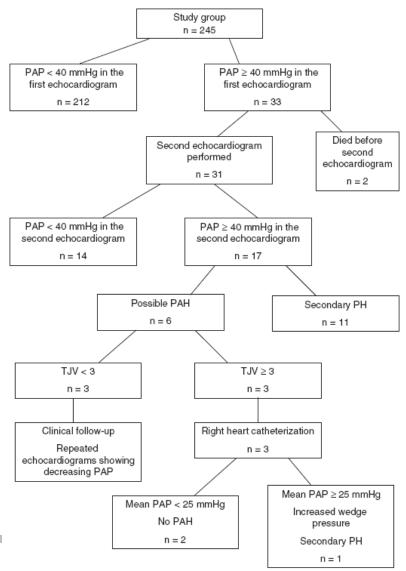


Evaluation of Dyspnea

- Clinical Assessment
- CBC, CMP, TSH, NT-pro BNP
- Spirometry, DLCO, TLC
- 6MWT / ambulatory oximetry
- CXR→ HRCT
- EKG, ? EST
- Echocardiogram
- RHC
- PSG, Exercise echocardiogram, Exercise RHC, CPET, serum lactate

Figure 1 Flowchart for the diagnostic evaluation of suspected RV failure associated with suspected PH

Simon, M. A. (2013) Assessment and treatment of right ventricular failure *Nat. Rev. Cardiol.* doi:10.1038/nrcardio.2013.12

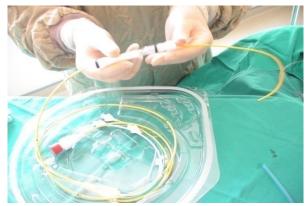


CTD Associated PAH

- CTD-PAH -- 15-30%
- Systemic Sclerosis (62-95%)
- SLE (8-17%)
- MCTD (8%)
- PM/DM (1-3%)
- Primary Sjogren's Syndrome 1-2%)
- RA (3-4%)
- Overlap (2%)
- Undifferentiated CTD (2%)

F:M ratio 4:1 mean age at diagnosis >60 y

Secondary PH More Prevalent in SLE


Echocardiographic Probability of PH in Symptomatic Patients Symptomatic Patients

Peak tricuspid regurgitation velocity (m/s)	Presence of other echo 'PH signs'a	Echocardiographic probability of pulmonary hypertension
≤2.8 or not measurable	No	Low
≤2.8 or not measurable	Yes	Intermediate
2.9–3.4	No	
2.9–3.4	Yes	Llieb
>3.4	Not required	High

Gold Standard in PAH Diagnosis Right Heart Catheterization

- Increased mPAP:
 - ≥ 25 mm Hg at rest, or
- PVR: ≥3 Wood units
- Severity
 - -RAP
 - -CI
 - SvO2
- Etiology

PH & PAH

- PH is defined as an increase in mPAP ≥25 mmHg at rest as assessed by RHC
- PAH describes a group of PH patients with pre-capillary PH (PAWP ≤15 mmHg and a PVR >3 WU in the absence of other causes of pre-capillary PH)

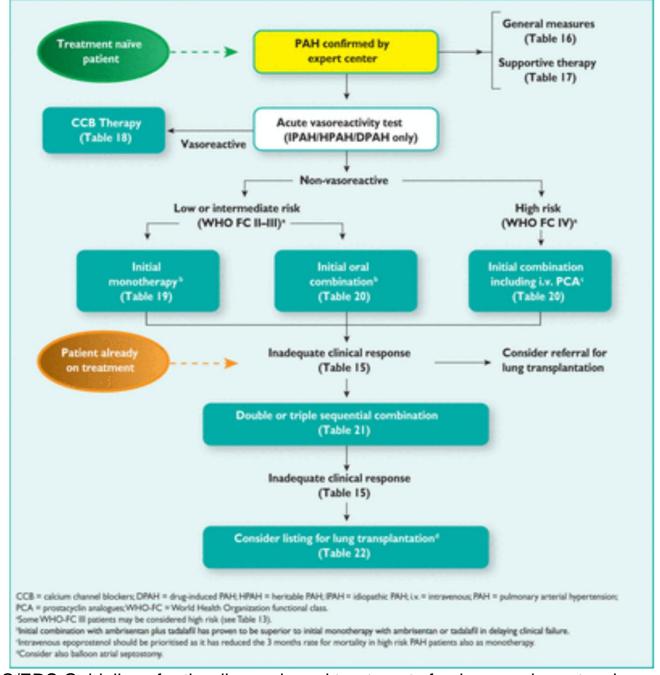
PH	PAPm ≽25 mmHg	All
Pre-capillary PH	PAPm ≥25 mmHg PAWP ≤15 mmHg	 Pulmonary arterial hypertension PH due to lung diseases Chronic thromboembolic PH PH with unclear and/or multifactorial mechanisms
Post-capillary PH	PAPm ≥25 mmHg PAWP >15 mmHg	PH due to left heart disease PH with unclear and/or multifactorial mechanisms
Isolated post-capillary PH (Ipc-PH)	DPG <7 mmHg and/or PVR ≤3 WU ^c	
Combined post-capillary and pre-capillary PH (Cpc-PH)	DPG ≥7 mmHg and/or PVR >3 WU ^c	

Risk Assessment for PAH

Determinants of prognosis ^a (estimated I-year mortality)	Low risk <5%	Intermediate risk 5–10%	High risk > 10%
Clinical signs of right heart failure	Absent	Absent	Present
Progression of symptoms	No	Slow	Rapid
Syncope	No	Occasional syncope ^b	Repeated syncope ^c
WHO functional class	l, II	Ш	IV
6MWD	>440 m	165 - 44 0 m	<165 m
Cardiopulmonary exercise testing	Peak VO ₂ > 15 ml/min/kg (>65% pred.) VE/VCO ₂ slope <36	Peak VO ₂ 11–15 ml/min/kg (35–65% pred.) VE/VCO ₂ slope 36–44.9	Peak VO ₂ < 11 ml/min/kg (<35% pred.) VE/VCO ₂ slope ≥45
NT-proBNP plasma levels	BNP <50 ng/l NT-proBNP <300 ng/l	BNP 50–300 ng/l NT-proBNP 300–1400 ng/l	BNP >300 ng/l NT-proBNP >1400 ng/l
Imaging (echocardiography, CMR imaging)	RA area <18 cm² No pericardial effusion	RA area 18–26 cm² No or minimal, pericardial effusion	RA area >26 cm ² Pericardial effusion
Haemodynamics	RAP <8 mmHg Cl ≥2.5 l/min/m² SvO₂ >65%	RAP 8–14 mmHg CI 2.0–2.4 l/min/m² SvO ₂ 60–65%	RAP > 14 mmHg CI <2.0 l/min/m ² SvO ₂ <60%

RV ejection fraction less than 35% TAPSE less than 15 mm

WHO FC


- I No limitation of usual physical activity; ordinary physical activity does not cause dyspnea, fatigue, chest pain, or presyncope (>7 METs)
- Il Mild limitation of physical activity; no discomfort at rest; but normal activity causes increased dyspnea, fatigue, chest pain, or presyncope (5 METs)
- III Marked limitation of activity; no discomfort at rest but less than normal physical activity causes increased dyspnea, fatigue, chest pain, or presyncope (2-3 METs)
- IV Unable to perform physical activity at rest; may have signs of RV failure; symptoms increased by almost any physical activity (1.6 METs)
- *MET (metabolic equivalent) is defined as the resting VO2 for a 40-year-old 70kg man.1
 MET = 3.5mL O2 /min/kg body weight.

PAH Treatment Goals

- Improve symptoms and quality of life
- Improve exercise capacity
 - 6MWT
 - WHO FC
- **Prevent Clinical Worsening**
 - Hospitalizations
 - Transplantation
- Improve Survival
 - Biomarkers
 - Hemodynamics

Nonspecific Treatment

- Supervised exercise training, Influenza & pneumococcal immunization, avoid pregnancy
- Digoxin
 - No RCT, no long term data
 - Advanced RV failure
 - Adjust to Renal function
- Hypoxemia: Oxygen
 - Rest, exercise, sleep, altitude
- **Diuretics**
- Anticoagulation
 - ? Benefit in IPAH (harmful in PH-SSc)
- Sleep apnea
 - Common co-morbidity

From: 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension Eur Heart J. 2015;37(1):67-119.

IV Epoprostenol vs Conventional Therapy for IPAH

Barst et al N Engl J Med 1996;334:296-301

RCT – 81 pts, 12 weeks

Improved HD, 6MWT, Survival

Epoprostenol: 315 m->362m

Conventional: 270->204 m

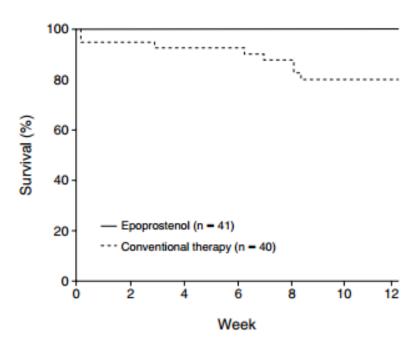
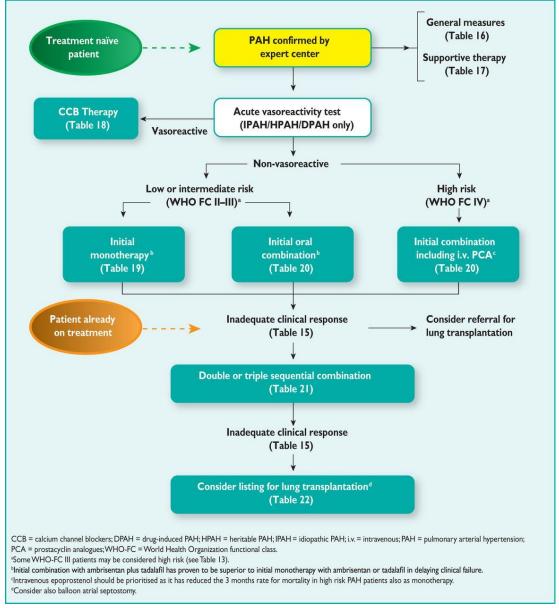


Figure 1. Survival among the 41 Patients Treated with Epoprostenol and the 40 Patients Receiving Conventional Therapy.

Data on patients who underwent transplantation during the 12-week study were censored at the time of transplantation. Estimates were made by the Kaplan-Meier product-limit method. The two-sided P value from the log-rank test was 0.003. Survival analysis with data on patients receiving transplants not censored at transplantation resulted in the same level of significance (two-sided P=0.003 by the log-rank test).

PH Specific Medications


Ca channel blockers

Name	Drug Class	Action	Route of Administration	Terminal Half-Life
Ambrisentan	Endothelin receptor antagonist	Blocks endothelin receptor A	Oral	15 h
Bosentan	Endothelin receptor antagonist	Blocks endothelin receptor A and B	Oral	5.4 h
Macitentan	Endothelin receptor antagonist	Blocks endothelin receptor A	Oral	14–18 h
Sildenafil	Phosphodiesterase type-5 inhibitor	Slows metabolism of intracellular cGMP	Oral or intravenous	4 h orally
Tadalafil	Phosphodiesterase type-5 inhibitor	Slows metabolism of intracellular cGMP	Oral	17.5 h
Epoprostenol	Prostacyclin	Increases intracellular cAMP	Intravenous or inhaled*	<6 min
Treprostinil	Prostacyclin derivative	Increases intracellular cAMP	Intravenous, subcutaneous, inhaled, or oral	4 h
lloprost	Prostacyclin derivative	Increases intracellular cAMP	Inhaled	20-30 min
Nitric oxide	Soluble guanylate cyclase stimulator	Increases intracellular cGMP	Inhaled	Seconds
Riociguat	Soluble guanylate cyclase stimulator	Increases intracellular cGMP	Oral	7–12 h

Selexipag

Evidence based treatment algorithm for pulmonary arterial hypertension patients (for group 1 patients only).

How to choose initial therapy

- PAH type
- Disease severity
- Drug availability / approval status,
- Route of administration, patients' preference,
- Side effect profile,
- Drug-drug interactions,
- Physicians' experience /preference

Risk Assessment for PAH

Determinants of prognosis ^a (estimated I-year mortality)	Low risk <5%	Intermediate risk 5–10%	High risk > 10%
Clinical signs of right heart failure	Absent	Absent	Present
Progression of symptoms	No	Slow	Rapid
Syncope	No	Occasional syncope ^b	Repeated syncope ^c
WHO functional class	l, II	III	IV
6MWD	>440 m	165 -44 0 m	<165 m
Cardiopulmonary exercise testing	Peak VO ₂ > 15 ml/min/kg (>65% pred.) VE/VCO ₂ slope <36	Peak VO ₂ 11–15 ml/min/kg (35–65% pred.) VE/VCO ₂ slope 36–44.9	Peak VO ₂ < 11 ml/min/kg (<35% pred.) VE/VCO ₂ slope ≥45
NT-proBNP plasma levels	BNP <50 ng/l NT-proBNP <300 ng/l	BNP 50–300 ng/l NT-proBNP 300–1400 ng/l	BNP >300 ng/l NT-proBNP >1400 ng/l
Imaging (echocardiography, CMR imaging)	RA area <18 cm² No pericardial effusion	RA area 18–26 cm² No or minimal, pericardial effusion	RA area >26 cm ² Pericardial effusion
Haemodynamics	RAP <8 mmHg Cl ≥2.5 l/min/m² SvO₂ >65%	RAP 8–14 mmHg CI 2.0–2.4 l/min/m² SvO ₂ 60–65%	RAP > 14 mmHg CI <2.0 l/min/m ² SvO ₂ <60%

RV ejection fraction less than 35% TAPSE less than 15 mm

Upfront triple combination therapy

- Retrospective analysis of prospective French reference centers
- IV epoprostenol, bosentan and sildenafil
- n=19, 17 F, 10/13 w BMPR2, 11 NYHA FC 4, 8 NYHA FC 3
- 18 pts w 100% 3 yr survival estimate (estimated 49% survival)

	Baseline	Month 4 visit	Final follow-up visit [#]
NYHA FC I/II/III/IV n	0/0/8/10	1/16/1/0**	4/14/0/0**
6MWD m	227 ± 171	463±94**	$514 \pm 105**.$
Haemodynamics			
RAP mmHg	11.9 ± 5.2	$4.9 \pm 4.9**$	$5.2 \pm 3.5**$
mPAP mmHg	65.8 ± 13.7	$45.7 \pm 14.0**$	$44.4 \pm 13.4**$
PCWP mmHg	8.4 ± 3.5	6.7 ± 3.2	7.9 ± 2.8
Cardiac index L·min ⁻¹ ·m ⁻²	1.66 ± 0.35	$3.49 \pm 0.69**$	$3.64 \pm 0.65**$
PVR dyn·s·cm ⁻⁵	1718 ± 627	564 ± 260**	492 ± 209**
Mean BP mmHg	92.1 ± 12.5	$80.1 \pm 11.7**$	84.9 ± 19.4
HR beats per min	92.3 ± 10.7	83.9 ± 9.8**	79.9 ± 13.4**
Sv0 ₂ %	51.0 ± 8.5	69.7 ± 5.2**	$72.2 \pm 4.0**$
Dose of epoprostenol achieved ng·kg ⁻¹ ·min ⁻¹	0	15.9 ± 1.9	19.6 ± 6.0

Web Table VIA Characteristics of randomised controlled trials with pulmonary arterial hypertension drugs interfering with the endothelin pathway (Endothelin receptors antagonists)

Drugs tested	Study	Number of patients	Duration (weeks)	Background therapy	Primary endpoint	Main results
Ambrisentan	ARIES-1 [10] 202 12 No 6MWD		6MWD improved TTCW not improved			
Ambrisentan	ARIES-2 [10]	192	12	No	6MWD	6MWD improved TTCW improved
	Study-351 [11]	32	12	No	6MWD	6MWD improved TTCW improved
	BREATHE-5 [12]	213	16	No	6MWD	6MWD improved TTCW improved
Bosentan	EARLY [13]	185	24	No, or Sildenafil (16%)	PVR, 6MWD	PVR improved TTCW improved 6MWD not improved
	BREATHE-5 [14]	54	12	No	Sa0 _{2,} PVR	PVR improved 6MWD improved
	COMPASS-2 [15]	334	99	Sildenafil	TTCW	TTCW not improved 6MWD improved NT-proBNP improved
Macitentan	SERAPHIN [16]	742	115	No, or Sildenafil, or Inh iloprost	TTCW	TTCW improved in monotherapy and combination

Web Table VIB Characteristics of randomised controlled trials with pulmonary arterial hypertension drugs interfering with the nitric oxide pathway (Soluble guanylate cyclase stimulators, Phosphodiesterase type-5 inhibitors)

Drugs tested	Study	Number of patients	Duration (weeks)	Background therapy	Primary endpoint	Main results
Riociquat	PATENT [17]	443	12	No, or bosentan, or prostanoids	6MWD	6MWD improved Haemodynamics improved
inociguat	PATENT plus [18]	30	18	Sildenafil	Supine SBP	Terminated for excess of SAE in the treated group
	SUPER-I [19]	227	12	No	6MWD	6MWD improved TTCW not improved
	Sastry [20]	22	12	No	TT	TT improved
	Singh [21]	20	6	No	6MWD	6MWD improved
Sildenafil	PACES [22]	264	16	Epoprostenol	6MWD	6MWD improved TTCW and haemodynamics improved
	Iversen [23]	20	12	Bosentan	6MWD	6MWD not improved
	Pfizer study A1481243	103	12	Bosentan	6MWD	6MWD not improved
Tadalafil	PHIRST [24]	405	16	No, or bosentan (54%)	6MWD	6MWD improved (In bosentan treated patients +23 m, 95% CI -2 to 48 m) TTCW improved
Vardenafil ^a	EVALUTATION [25]	66	12	No	6MWD	6MWD improved TTCW improved

Web Table VIC Characteristics of randomised controlled trials with pulmonary arterial hypertension drugs interfering with the prostacyclin pathway (Prostacyclin analogues and prostacyclin receptors agonists)

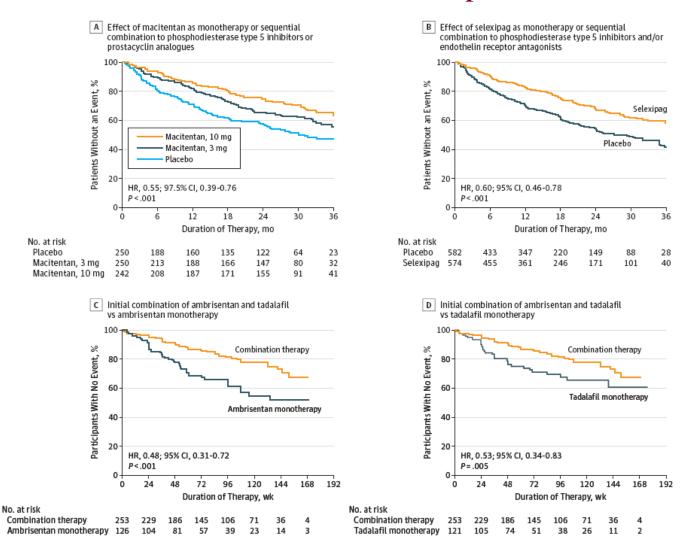
Drugs tested	Study	Number of patients	Duration (weeks)	Background therapy	Primary endpoint	Main results
Beraprost ^o	ALPHABET [26]	130	12	No	6MWD	6MWD improved Haemodynamics not improved
	Barst [27]	116	52	No	CW	CW not improved
	Rubin [28]	23	12	No	6MWD	6MWD improved Haemodynamics improved
Epoprostenol	Barst [29]	81	12	No	6MWD	6MWD improved Haemodynamics improved Survival improved
	Badesch [30]	111	12	No	6MWD	6MWD improved
	AIR [31] 203 12 No		6MWD and FC	6MWD and WHO-FC improved Haemodynamics improved at peak		
Inhaled Iloprost	STEP [32]	67	12	Bosentan	6MWD	6MWD improved (p=0.051) TTCW improved
nuprost	COMBI [33]	40	12	Bosentan	6MWD	Terminated for futility 6MWD not improved No clinical improvement

Web Table VIC Characteristics of randomised controlled trials with pulmonary arterial hypertension drugs interfering with the prostacyclin pathway (Prostacyclin analogues and prostacyclin receptors agonists)

Drugs tested	Study	Number of patients	Duration (weeks)	Background therapy	Primary endpoint	Main results
Treprostinil	SC–Pivotal study [34]	470	12	No	6MWD	6MWD improved Haemodynamics improved Pain at infusion site
	Inhal ^a TRIUMPH [35]	235	12	Bosentan or sildenafil	6MWD	6MWD improvement (+20 m at peak, +12 m at trough) TTCW not improved
	PO®-Freedom M [36]	185	16	No	6MWD	6MWD improvement (+26 m at peak, +17 m at trough) TTCW not improved
	P0°-Freedom CI [37]	354	16	ERA and/or PDE-5i	6MWD	6MWD not improved TTCW not improved
	PO*-Freedom CI [38]	310	16	ERA and/or PDE-5i	6MWD	6MWD not improved TTCW not improved
Salavinana	Phase - 2 [39]	43	17	ERA and/or PDE-5i	PVR	PVR improved 6MWD not improved
Selexipag [®]	Griphon [40]	1156	74	ERA and/or PDE-5i	TTCW	TTCW improved

Monotherapy per ERS//ESC Guidelines

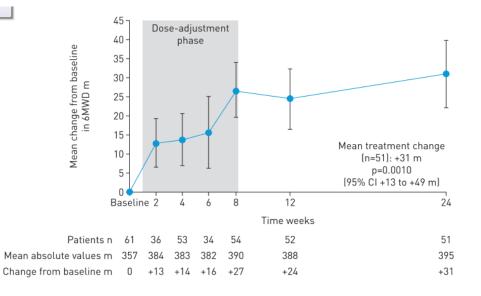
Measure/treatment				Class ^a -Level ^b					
· · · · · · · · · · · · · · · · · · ·					WHO.	FC III	wно	FC IV	
Calcium channel blockers			1	C⁴	1	C ^d		_	
Endothelin receptor antagonists	Ambrisentan		1	A	1	A	IIb	С	
	Bosentan		1	A	1	A	Шь	С	
	Macitentan ^e		1	В	1	В	IIb	С	
Phosphodiesterase type 5 inhibitors	Sildenafil		1	A	1	A	ШЬ	С	
	Tadalafil	Tadalafil			- 1	В	IIb	С	
	Vardenafil ^g	Vardenafil ^g			IIb	В	IIb	С	
Guanylate cyclase stimulators	Riociguat		1	В	- 1	В	IIb	С	
Prostacyclin analogues	Epoprostenol	Intravenous ^e	-	-	1	A	1	A	
	lloprost	Inhaled	-	-	1	В	Шь	С	
		Intravenous ^g		-	lla	С	IIb	С	
	Treprostinil	Subcutaneous			- 1	В	IIb	С	
		Inhaled ^g			- 1	В	IIb	С	
		Intravenous ^f			lla	С	IIb	С	
		Oral ^g	-	-	Шь	В		-	
	Beraprost ⁸			-	IIb	В			
IP receptor agonists	Selexipag (ora	l) ^g	1	В	1	В	-	-	

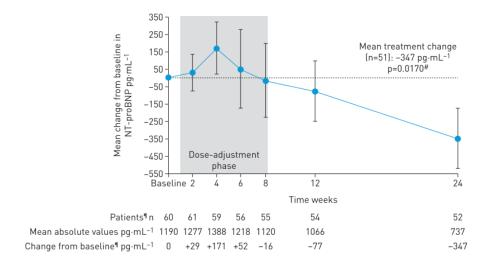

Combination Therapy in PAH

- Sequential
 - Dual
 - Triple
- Upfront
 - Ambrisentan + Tadalafil

Sequential Combination Therapy in PAH

Measure/	Class ^a -Level ^b						
treatment	WHO			O-FC	WHO		
Macitentan added to sildenafil ^d	ı	В	1	В	IIa	С	
Riociguat added to bosentan	ı	В	1	В	Ha	С	
Selexipag ^e added to ERA and/or PDE-51 ^d	1	В	1	В	Ha	U	
Sildenafil added to epoprostenol	-	-	1	В	Ha	В	
Treprostinil, inhaled added to sildenafil or bosentan	lla	В	lla	В	lla	C	
Riociguat added to sildenafil or other PDE-Si	ш	В	ш	В	ш	В	

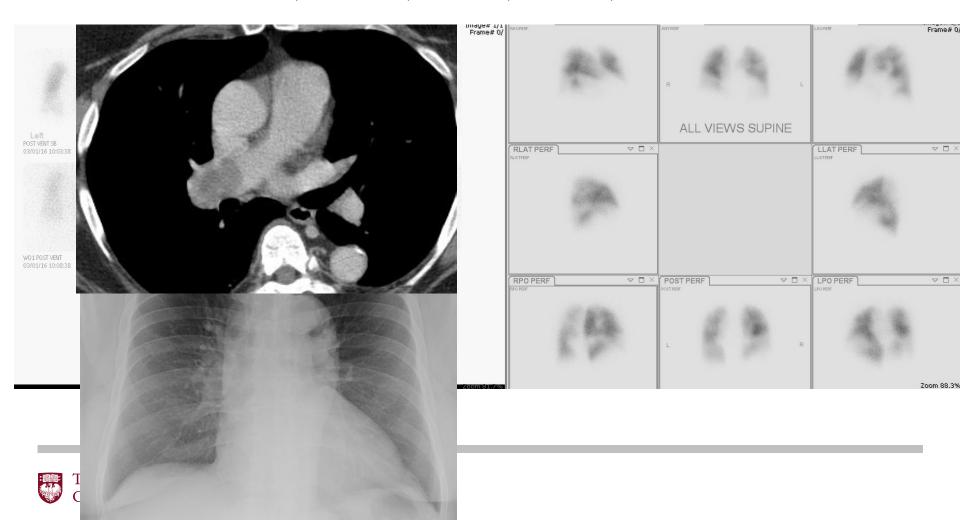

KM Curves for the Effect of Various Therapies for PH alie JAMA Cardiology 2016



RESPITE: switching to riociguat in pulmonary arterial hypertension patients with inadequate response to phosphodiesterase-5 inhibitors

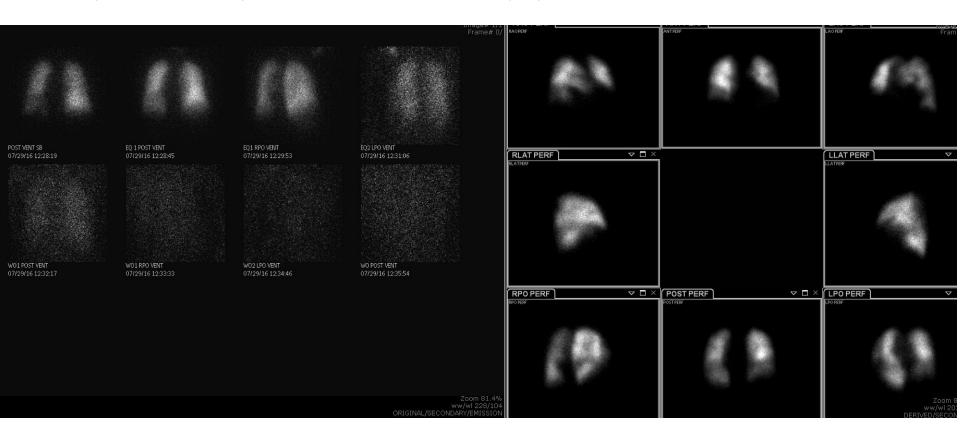
Marius M. Hoeper¹, Gérald Simonneau², Paul A. Corris³, Hossein-

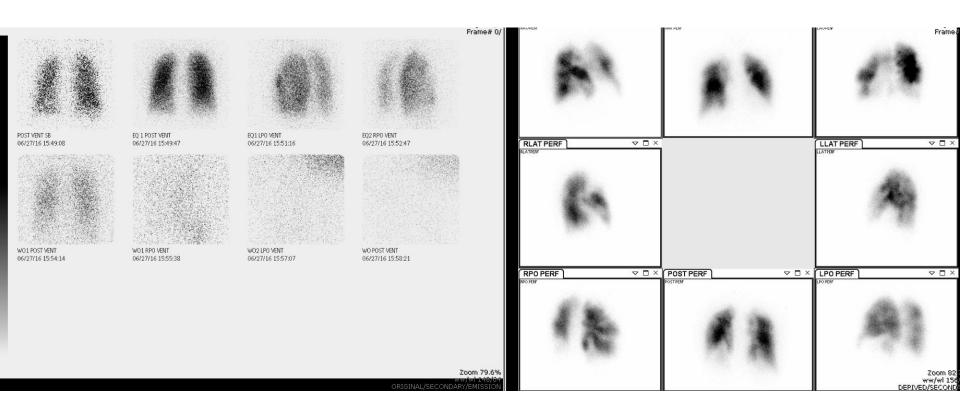
Open label background tx with ERAs n=61, FC III


Eur Respir J 2017; 50

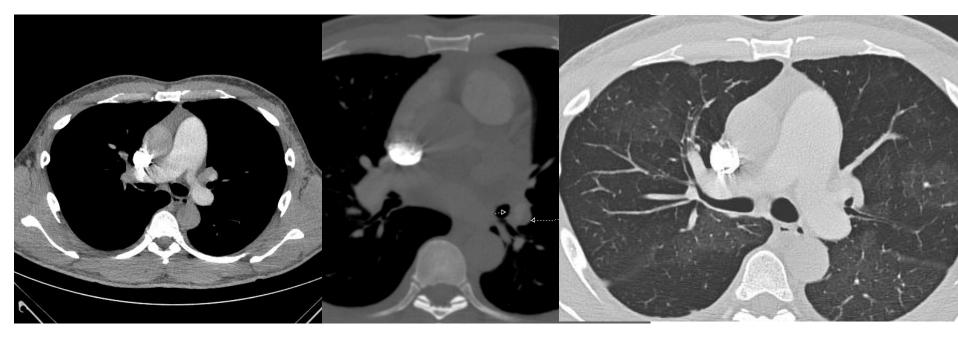
Toxicity:

- Embryo-fetal: Ambrisentan, Bosentan, Macitentan, Riociguat
- Liver: Bosentan, Ambrisentan, Macitentan
- Edema: Ambrisentan
- Anemia: Macitentan
- Line infection, thrombosis
- Multiple SE: HA, GI, diarrhea

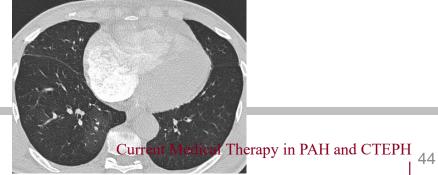

Case

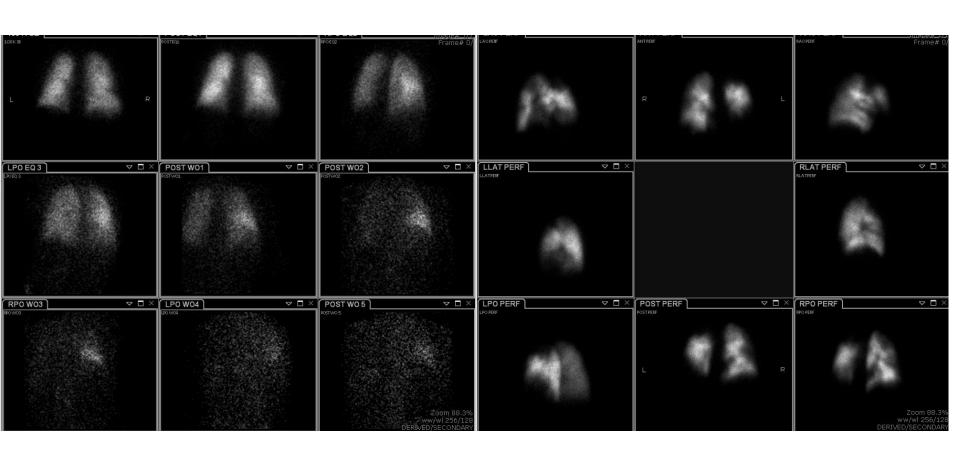

- DVT & PE 2/12/2016
- RHC 2/2016 : mRAP 8, PAP 80/30, mPAP 42, no PCWP, Fick CO 6.4

Case in ~ 6 mo


WHO FC 3, 6MWT 357 m, min SpO2 90% VQ 7/29/2016-6 mo RHC (after CPAP use):RA 6, RV 75/10, PA 75/25 (38), PCW 10, TD CO 3.7, PVR= 7.5

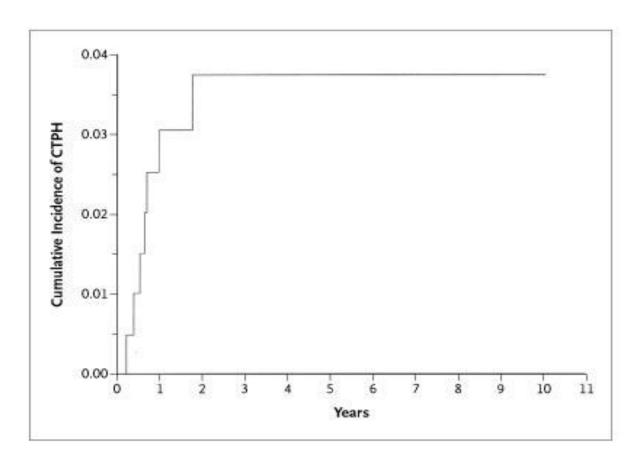
CT



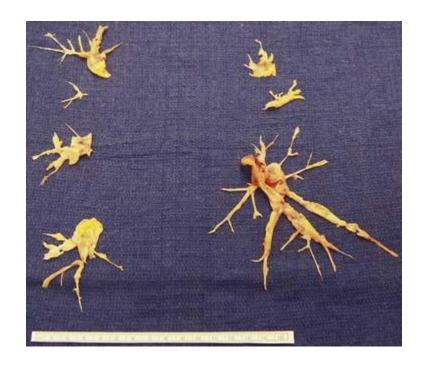

PAD 38 mm

Web-like filling defect and circumferential

narrowing


Mosaic pattern

The Cumulative Incidence of CTEPH after a First Episode of PE



CTEPH Treatment

CHEST-1 n=261, Riociguat

Thromboendaterectomy $N = ^500/year$ in the US

BPA for CTEPH

Table 2. Recent haemodynamic results from balloon pulmonary angioplasty

PVR, dyn/s/cm ⁻⁵				
	n	Before BPA	After BPA	BPA effect in PVR
Sugimura et al. [10]	12	627 ± 236	310±73	-54%
Mizoguchi et al. [12]	68	942±367	327 ± 151	-65%
Andreassen et al. [13]	20	704 ± 320	472 ± 288	-33%
Fukui et al. [14"]	20	889±365	490 ± 201	-45%
Taniguchi et al. [16]	29	763 ± 308	284±128	-63%

 $Data\ are\ presented\ as\ mean\pm standard\ deviation\ unless\ otherwise\ noted.\ BPA,\ balloon\ pulmonary\ angioplasty;\ PVR,\ pulmonary\ vascular\ resistance.$

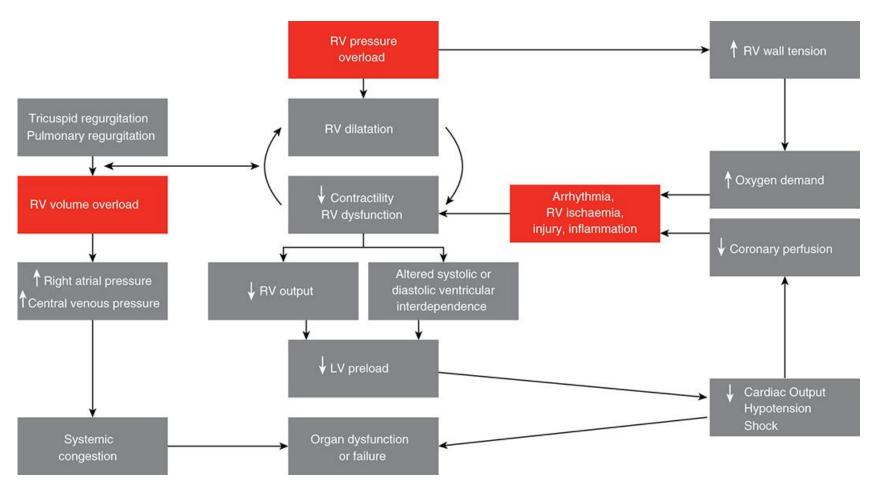
Monitoring / Follow-up

Evaluation of Disease Severity and Monitoring in PAH O15 ESC/ERS Guidelines

- Objective and multiparameter evaluation
- Baseline and ongoing to assess disease progression and treatment effect
- Symptoms and signs of R HF, volume status, syncope, hospitalization,
- WHO FC
- 6MWT / CPET
- BNP/ NT-proBNP
- Hemodynamics
- Imaging (ECHO, cardiac MR)

Risk Assessment for PAH

Determinants of prognosis ^a (estimated I-year mortality)	Low risk <5%	Intermediate risk 5–10%	High risk >10%
Clinical signs of right heart failure	Absent	Absent	Present
Progression of symptoms	No	Slow	Rapid
Syncope	No	Occasional syncope ^b	Repeated syncope ^c
WHO functional class	I, II	III	IV
6MWD	>440 m	165 -44 0 m	<165 m
Cardiopulmonary exercise testing	Peak VO ₂ > 15 ml/min/kg (>65% pred.) VE/VCO ₂ slope <36	Peak VO ₂ 11–15 ml/min/kg (35–65% pred.) VE/VCO ₂ slope 36–44.9	Peak VO ₂ < 11 ml/min/kg (<35% pred.) VE/VCO ₂ slope ≥45
NT-proBNP plasma levels	BNP <50 ng/l NT-proBNP <300 ng/l	BNP 50-300 ng/l NT-proBNP 300-1400 ng/l	BNP >300 ng/l NT-proBNP >1400 ng/l
Imaging (echocardiography, CMR imaging)	RA area <18 cm² No pericardial effusion	RA area 18–26 cm² No or minimal, pericardial effusion	RA area >26 cm² Pericardial effusion
Haemodynamics	RAP <8 mmHg Cl ≥2.5 l/min/m² SvO ₂ >65%	RAP 8–14 mmHg CI 2.0–2.4 l/min/m ² SvO ₂ 60–65%	RAP > 14 mmHg CI <2.0 l/min/m ² SvO ₂ <60%


Common Pitfalls in the Management of PAH

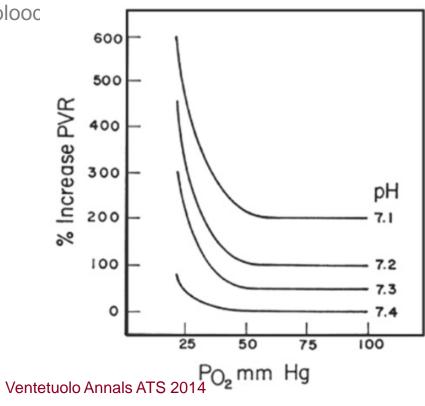
- Diagnosis too late
- Patients at risk not screened
- Diagnostic work-up incomplete
 - Primary / associated / secondary not discerned
- Diagnosis relies on echocardiographic findings only
- Right heart catheterization and vasodilator test are not performed
- Inappropriate 6-min walk test
- Inappropriate use of calcium channel blockers/sildenafil
- Inappropriate use of combination therapy
- Too late to refer for lung transplantation

Approach to Acute RV Failure

Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology

Approach to Acute Decompensated RVF

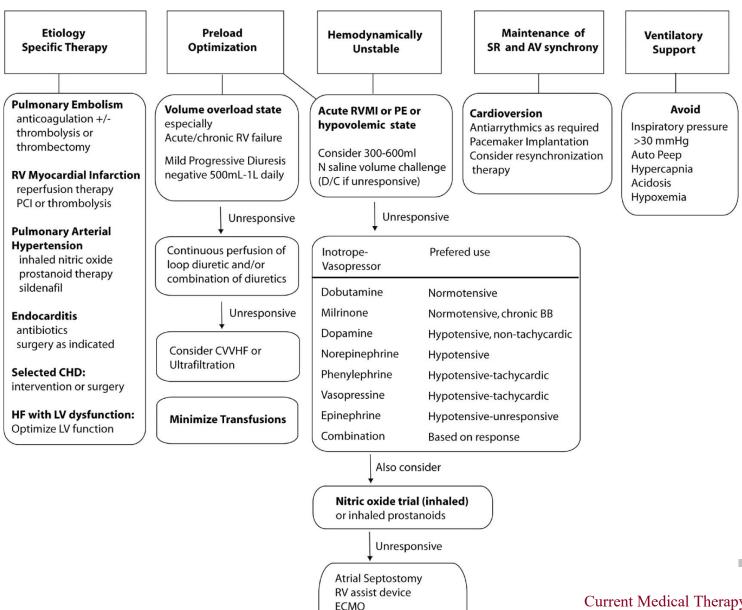
- (1) Determine the cause of the decompensation
- (3) Avoid hypoxia, hypercapnia, acidosis
- (3) maximize cardiac output and systemic blood pressure
- (4) RV afterload reduction.


Approach to Acute Decompensated RVF 1-Cause of the decompensation

- Interruption of pulmonary vasodilator therapy
- Sepsis
- Pneumonia,
- Arrhythmia
- Pregnancy
- Volume Overload /dietary indiscretion
- PE, RV Ischemia

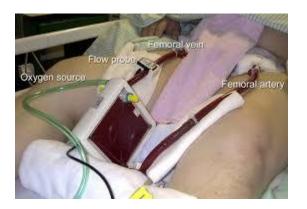
Approach to Acute Decompensated RVF

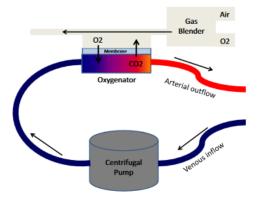
- (1) Determine the cause of the decompensation
- (3) Avoid hypoxia, hypercapnia, acidosis
- (3) maximize cardiac output and systemic blooc
- (4) RV afterload reduction.



Vasoactive Drugs Used in RVF

Inotropes	Effect on PVR	Effect on SVR	PVR/SVR Ratio
Dobutamine 58-60,81-83 Milrinone 59,60,84,85 Norepinephrine 65,92 Dopamine Epinephrine Vasopressin 85,86 Phenylephrine 65,92	↓ ↔ a ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↑	↓ ↔ a ↓ ↑ ↑ ↑ ↑	$\begin{array}{c} \longleftrightarrow \\ \downarrow \\ \longleftrightarrow \\ \longleftrightarrow \\ \longleftrightarrow \\ \downarrow \\ \uparrow \end{array}$

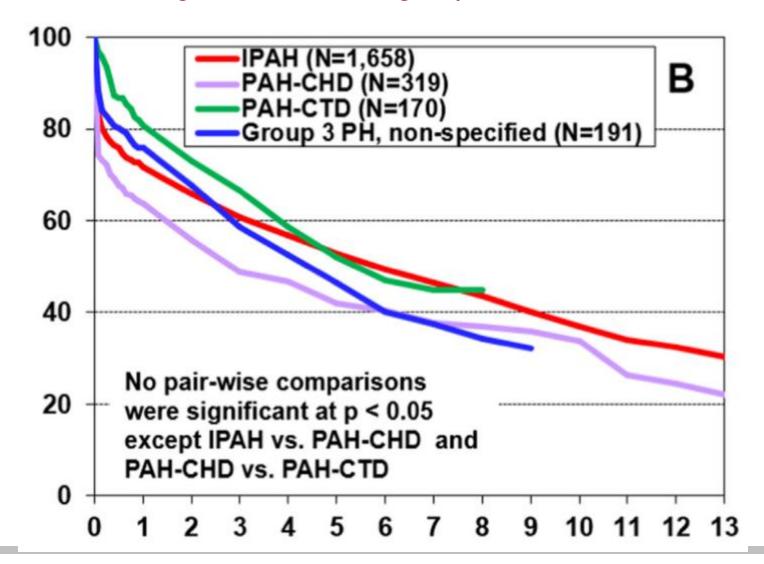

Acute Right Ventricular Failure



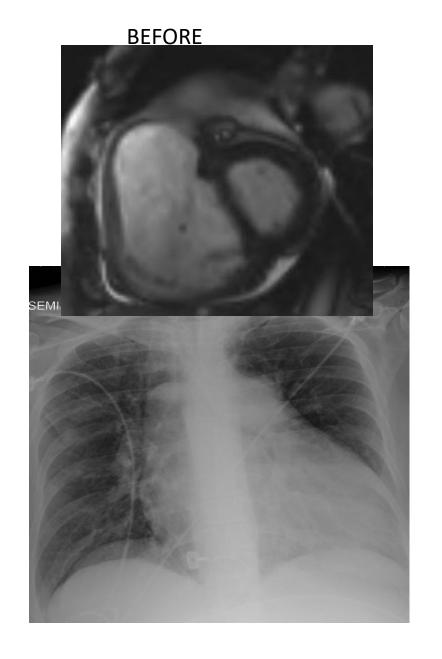
Transplantation Surgery (experimental)

Atrial Septostomy, VA ECMO, RVAD, Lung

Transplantation
Inadequate clinical response to maximal combination therapy

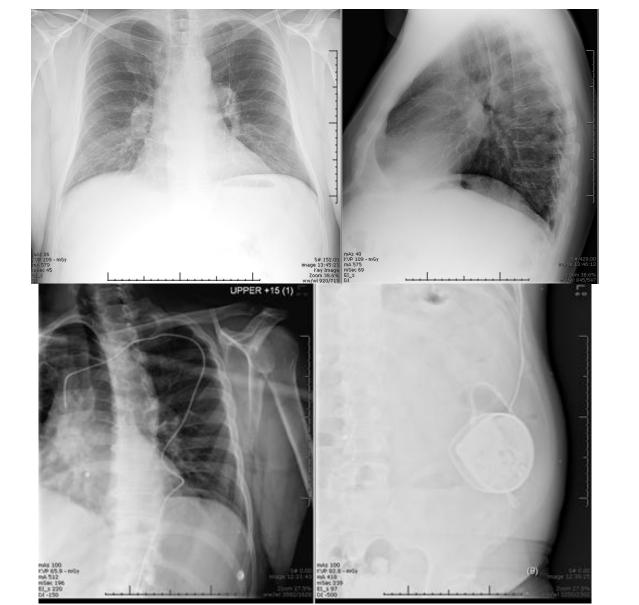

PAH: Timing of referral

- NYHA FC III or IV symptoms during escalating therapy.
- Rapidly progressive disease
- Use of parenteral targeted PAH therapy regardless of symptoms or NYHA FC
- Any PVOD or pulmonary capillary hemangiomatosis


PAH: Timing of Listing

- NYHA FC III or IV symptoms despite a trial of at least 3 mo of combination Rx including prostanoids
- Cardiac index of <2 liters/min/m2
- Mean RAP >15 mmHg
- 6-MWT <350 m.
- Significant hemoptysis, pericardial effusion, or signs of progressive right heart failure(renal insufficiency, increasing bilirubin, BNP, recurrent ascites)

Survival with Lung Tx – ISHLT Registry 2016


AFTER

Summary

- PAH is characterized by vascular proliferation, hypertrophy, and fibrosis, leading to HD and RV abnormalities
- PAH progresses rapidly and has poor prognosis
- Echo is good screening tool for PAH
- RHC is required for confirmation of dx
- Endothelin, prostacyclin, and nitric oxide are key mediators and key targets for therapy

April 2012

> Sept 2013